首页> 外文OA文献 >Molecular dynamics simulations of hydrogen bonding in clathrate hydrates with ammonia and methanol guest molecules
【2h】

Molecular dynamics simulations of hydrogen bonding in clathrate hydrates with ammonia and methanol guest molecules

机译:笼形水合物与氨和甲醇客体分子氢键的分子动力学模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We performed molecular dynamics simulations of the ammonia and methanol-based clathrate hydrates with the emphasis on characterizing hydrogen-bonding interactions of these guest molecules with the water lattice. Systems studied include structure II (sII) binary clathrate hydrates of tetrahydrofuran (THF) (large cage, L) + NH3 (small cage, S) and THF (L) + CH3OH (S), the structure I (sI) pure NH3 (L), pure CH3OH (L), the binary NH3 (L) + CH4 (S), and binary CH3OH (L) + CH4 (S) clathrate hydrates. We simulated these clathrate hydrates with the transferable intermolecular potential with four point changes (TIP4P) water potential and the TIP4P/ice water potential to determine the effect of the water potential on the predicted hydrogen bonding of the guest molecules. Simulations show that, despite strongly hydrogen bonding with the framework water molecules, clathrate hydrate phases with NH3 and CH3OH can be stable within temperatures ranges up to 240 K. Indeed, a limited number of thermodynamic integration free energy calculations show that both NH3 and CH3OH molecules give more stable guest-host configurations in the large sI clathrate hydrate cages than methane guests. Predictions of hydrogen bonding from simulations with the two different water potentials used can differ substantially. To study the effect of proton transfer from water to the basic NH3 guests, simulations were performed on a binary NH3 + CH4 sI clathrate hydrate where less than 10 % of the ammonia guests in the large cages were converted to NH4 + and a water molecule of the hydrate lattice in the same large cage was converted to OH-. The small percentage of proton transfer to ammonia guests in the large cages did not affect the stability of the resultant hydrate. The structural perturbations in the lattice that result from this proton transfer are characterized.
机译:我们进行了基于氨和甲醇的笼形水合物的分子动力学模拟,重点是表征这些客体分子与水晶格的氢键相互作用。研究的系统包括结构II(sII)四氢呋喃(THF)(大笼L)+ NH3(小笼S)和THF(L)+ CH3OH(S)的二元笼形水合物,结构I(sI)纯NH3( L),纯CH3OH(L),二元NH3(L)+ CH4(S)和二元CH3OH(L)+ CH4(S)笼形水合物。我们模拟了具有四个点变化(TIP4P)水势和TIP4P /冰水势的可转移分子间电势的笼形水合物,以确定水势对客体分子预测氢键的影响。模拟表明,尽管氢与骨架水分子牢固结合,但NH 3和CH 3 OH的笼形水合物相在高达240 K的温度范围内仍能保持稳定。实际上,有限的热力学积分自由能计算表明,NH 3和CH 3 OH分子在大型sI笼状水合物笼中可提供比甲烷客气更稳定的客气主机配置。根据使用的两种不同水势的模拟得出的氢键键合预测可能存在很大差异。为了研究质子从水转移到基本NH3客体的影响,对二元NH3 + CH4 sI笼形水合物进行了模拟,其中大笼子中少于10%的氨客体被转化为NH4 +和水分子。在相同大笼子中的水合物晶格被转化为OH-。在大笼子中,少量的质子转移到氨气中并不会影响所得水合物的稳定性。表征了由质子转移导致的晶格中的结构扰动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号